Telegram Group & Telegram Channel
📱 Как кросс-валидация применяется к большим нейросетям (например, GPT-подобным моделям) с миллионами или миллиардами параметров

Полноценная k-фолд кросс-валидация в контексте таких моделей обычно непрактична из-за колоссальных затрат времени и вычислительных ресурсов. Однако есть ряд подходов, позволяющих сбалансировать проверку качества модели и реалистичность обучения:

❗️ Возможные стратегии

1. Уменьшенное значение k (Reduced k)

Часто используют просто отложенную выборку (hold-out) или 2-фолд кросс-валидацию. Иногда применяют случайные разбиения несколько раз вместо традиционных 5-10 фолдов.

2. Чекпойнты и частичное повторное использование весов

Хотя обучение на каждом фолде требует разных данных, можно:
🟠дообучать модель с уже натренированными весами,
🟠использовать подходы transfer learning или fine-tuning.

Это не полностью корректно, но снижает затраты.

3. Параллельное и распределённое обучение

Если есть достаточное количество ресурсов (кластер, TPU/облачные GPU), фолды можно обучать параллельно.

4. Субсэмплирование данных

При очень больших датасетах можно делать случайную подвыборку на каждом фолде. Это сохраняет распределение, но уменьшает общий объём обучающих данных.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/962
Create:
Last Update:

📱 Как кросс-валидация применяется к большим нейросетям (например, GPT-подобным моделям) с миллионами или миллиардами параметров

Полноценная k-фолд кросс-валидация в контексте таких моделей обычно непрактична из-за колоссальных затрат времени и вычислительных ресурсов. Однако есть ряд подходов, позволяющих сбалансировать проверку качества модели и реалистичность обучения:

❗️ Возможные стратегии

1. Уменьшенное значение k (Reduced k)

Часто используют просто отложенную выборку (hold-out) или 2-фолд кросс-валидацию. Иногда применяют случайные разбиения несколько раз вместо традиционных 5-10 фолдов.

2. Чекпойнты и частичное повторное использование весов

Хотя обучение на каждом фолде требует разных данных, можно:
🟠дообучать модель с уже натренированными весами,
🟠использовать подходы transfer learning или fine-tuning.

Это не полностью корректно, но снижает затраты.

3. Параллельное и распределённое обучение

Если есть достаточное количество ресурсов (кластер, TPU/облачные GPU), фолды можно обучать параллельно.

4. Субсэмплирование данных

При очень больших датасетах можно делать случайную подвыборку на каждом фолде. Это сохраняет распределение, но уменьшает общий объём обучающих данных.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/962

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA